Exercise sheet 12

For exercises 1 and 2, you may assume that there exists a constant C>0 such that any zero ρ of $\zeta(s)$ satisfies

$$\Re(\rho) < 1 - \frac{C}{\log\left(2 + |\Im(\rho)|\right)}.$$

For exercises 5-7, you may assume that there exists a constant C > 0 such that if χ is a Dirichlet character modulo q then any zero ρ of $L(s,\chi)$ satisfies

$$\Re(\rho) < 1 - \frac{C}{\log(q(1+|\Im(\rho)|))},$$

unless the possibility of at most one real zero $1 - \frac{C}{\log q} < \beta < 1$ when χ is quadratic.

- 1. Let $s = \sigma + it$ with $\sigma > 1 \frac{C}{2\log(2+|t|)}$ and $|t| \ge 2$. Then
 - (a) $\left| \frac{\zeta'}{\zeta}(s) \right| \ll \log(|t| + 2);$

Hint: Show first for $s_1 = 1 + \frac{1}{\log(|t|+2)} + it$. Then show $\left| \frac{\zeta'}{\zeta}(s) - \frac{\zeta'}{\zeta}(s_1) \right| \ll \log(|t|+2)$ using that

$$\frac{\zeta'}{\zeta}(s) - \frac{\zeta'}{\zeta}(s_1) = \sum_{\rho: |s-\rho| \le 1} \left(\frac{1}{s-\rho} - \frac{1}{s_1 - \rho} \right) + O\left(\log(|t| + 2)\right)$$

and that $|s - \rho| \simeq |s_1 - \rho|$.

- (b) $|\log \zeta(s)| \leq \log \log(|t|+2) + O(1)$; Hint: Use that for u > 1 we have $\zeta(u) < 1 + \frac{1}{u-1}$. Show again first for s_1 and use that $\log(s) - \log(s_1) = \int_{s_1}^s \frac{\zeta'}{\zeta}(z) dz$.
- (c) $\left| \frac{1}{\zeta(s)} \right| \ll \log(|t| + 2)$. Hint: $\log \left| \frac{1}{\zeta(s)} \right| = -\Re \log \zeta(s)$.
- 2. (a) We can prove the Prime Number Theorem directly using Perron formula's without using the explicit formula. Use Perron's formula along with Cauchy's Residue Theorem to show that there exists a constant c > 0 such that

$$\psi(x) = x + O(xe^{-c\sqrt{\log x}}).$$

Hint: You may shift the contour from $\sigma = 1 + \frac{1}{\log x}$ to $\sigma = 1 - \frac{C}{2(\log T)}$ and choose T optimally. Use the bound for $\frac{\zeta'}{\zeta}$ from exercise 1.

(b) Let $M(x) = \sum_{n \le x} \mu(n)$. Show that

$$M(x) \ll xe^{-c\sqrt{\log x}}.$$

Hint: Apply the same method for $\frac{1}{\zeta(s)}$.

(c) Show that

$$\sum_{n \le x} \frac{\mu(n)}{n} \ll e^{-c\sqrt{\log x}}.$$

Hence in particular deduce that

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = 0.$$

- **3.** (a) Show that there exists a constant $0 < \theta < 1/2$ such that $\zeta(s)$ has no zeros in the region $\Re \mathfrak{e}(\rho) > 1 \theta$ if and only if for any $\epsilon > 0$, $\psi(x) = x + O(x^{1-\theta+\epsilon})$.
 - (b) Thus show that

$$\sum_{n \le x} \mu(n) = O(x^{1-\theta+\epsilon})$$

if and only if

$$\psi(x) = x + O(x^{1-\theta+\epsilon}).$$

4. Show that if χ is a character modulo q and $3/4 \le \sigma \le 2$, then

$$-\frac{L'}{L}(s,\chi) = \frac{\mathbf{1}_{\chi = \chi_0}}{s-1} - \sum_{\rho: |\rho - s| \le 1} \frac{1}{s-\rho} + O\left(\log(q(|t|+1))\right).$$

Hint: Show first for primitive characters.

5. Show that there exists a universal constant c_1 such that if $q \leq \exp(2c_1\sqrt{\log x})$ and $L(s,\chi)$ has no exceptional zero, then

$$\psi(x,\chi) = \mathbf{1}_{\chi=\chi_0} x + O\left(x \exp(-c_1 \sqrt{\log x})\right),$$

but if $L(s,\chi)$ has an exceptional zero β , then

$$\psi(x,\chi) = -\frac{x^{\beta}}{\beta} + O\left(x \exp(-c_1 \sqrt{\log x})\right).$$

- **6.** Let $\chi_1 \pmod{q_1}$ and $\chi_2 \pmod{q_2}$ two distinct, real, primitive characters.
 - (a) For $\sigma > 1$, show that

$$-\frac{\zeta'}{\zeta}(\sigma) - \frac{L'}{L}(\sigma, \chi_1) - \frac{L'}{L}(\sigma, \chi_2) - \frac{L'}{L}(\sigma, \chi_1 \chi_2) \ge 0.$$

(b) Let β_j be a real zero of $L(s,\chi_j)$, for j=1,2. Deduce that for $\sigma>1$,

$$\frac{1}{\sigma - \beta_1} + \frac{1}{\sigma - \beta_2} \le \frac{1}{\sigma - 1} + O\left(\log(q_1 q_2)\right).$$

- (c) Show that there exists a constant $c_3 > 0$ such that $\min(\beta_1, \beta_2) < 1 \frac{c_3}{\log(q_1 q_2)}$.
- (d) Show that there exists a constant $c_4 > 0$ such that for $Q \ge 3$, there exists at most one $q \le Q$ for which it exists a real primitive character $\chi \pmod{q}$ with a real zero $\rho > 1 \frac{c_4}{\log Q}$.
- 7. Assume that for all $\epsilon > 0$, there exists a constant $C(\epsilon)$ such that for all for each real, primitive character χ modulo q, we have $L(1,\chi) \geq C(\epsilon)q^{-\epsilon}$.

(a) Show that there exists $C'(\epsilon)$ such that for each χ modulo q, a real zero β of $L(s,\chi)$ satisfies $\beta \leq 1 - C'(\epsilon)q^{-\epsilon}$.

Hint: You may use that $|L'(\sigma,\chi)| \ll (\log q)^2$, when $\sigma > 1 - \frac{C}{2\log q}$.

(b) Show that for any positive A, there exists a constant $c_2 = c_2(A)$ such that for all $q \le (\log x)^A$ and χ modulo q, we have

$$\psi(x,\chi) = \mathbf{1}_{\chi=\chi_0} x + O\left(x \exp(-c_2 \sqrt{\log x})\right).$$

(c) Deduce that

$$\psi(x;q,a) = \frac{x}{\varphi(q)} + O\left(x\exp(-c_2\sqrt{\log x})\right)$$

and

$$\pi(x; q, a) = \frac{\operatorname{Li}(x)}{\varphi(q)} + O\left(x \exp(-c_2 \sqrt{\log x})\right).$$

8. (a) Let z be a complex number such that $z \neq 0, -1, -2...$ Show that

$$\frac{\Gamma'}{\Gamma}(z) = -\gamma + \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+z} \right).$$

(b) Using the Euler–Maclaurin formula, or otherwise, deduce that if $|\arg(z)| < \pi$, then

$$\frac{\Gamma'}{\Gamma}(z) = \log z - \frac{1}{2z} + O\left(\frac{1}{(z+1)^2}\right).$$